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ABSTRACT 
 
The very long-standing problem of sound waves propagation in fluids is reexamined. In particular, from the analysis of 
the wave damping in reacting gases following the work by Einstein (1929), it is found that the damping due to the 
chemical reactions occurs nonetheless the second (bulk) viscosity introduced by Landau and Lifshitz (1987) is zero. The 
simple but important case of a recombining Hydrogen plasma is examined. 
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INTRODUCTION  
 
Propagation of disturbances, in particular sound waves in 
hypothetical equilibrium fluids has been researched since 
the pioneer work by several famous researchers (Lord 
Rayleigh, 1964; Einstein, 1929; Einstein and de Donder, 
1929; Lamb, 1932; Lighthill, 1978). The main 
characteristics of sound waves have been well established, 
i.e. the waves propagate with certain velocity and can be 
damped by the following irreversible processes: 
viscosities, thermal conduction, and chemical reactions. 
Landau and Lifshitz (1987) introduced a bulk (second) 
viscosity coefficient ζ in the equation of motion for 
accounting the dissipation of energy due to compression 
or expansion through transferring kinetic energy into 
internal degrees of freedom (such as chemical reactions, 
excitation of atomic/molecular levels, etc.). However, in 
the case of chemical reactions, such approximation only 
holds if one neglects any other effects except the density 
change δρ due to the chemical reaction.  
 
Henceforth, as it will be shown at the present note, the 
Landau approximation is rather restrictive. In fact, if ξ is a 
parameter characterizing the degree of advance of 
chemical reaction in the fluid (say, the concentration of 
one chemical component) and ξ0 its respective value at 
chemical equilibrium, which generally is a function of the 
equilibrium density ρ0 and temperature T0, say ξ0(ρ0, T0) 
(Vincenti and Kruger, 1975). Henceforth, as it can be 
realized, in the Landau approximation (Landau and 
Lifshitz, 1987; Ibáñez, 2009) the second viscosity 
coefficient is ∼ (∂ξ0/∂ρ)T. Therefore, when (∂ξ0/∂ρ)T = 0, 
the acoustic wave damping is also zero. However, when 
(∂ξ0/∂T)ρ ≠ 0, the sound waves could be damped 
nonetheless the Landau bulk viscosity coefficient is zero, 
as it will be shown below.  
 

The present analysis on the bulk viscosity is made for any 
reacting gas where the chemical reactions can be reduced 
to a net reaction that can be described by one parameter 
measuring the advance of the reaction (Yoneyama, 1973; 
Ibáñez and Parravano, 1983). However, for context, the 
results are applied to a Hydrogen plasma where the 
simple reaction H+ + e− ↔ H + (χ) proceeds (χ being the 
ionization potential). The knowledge of the above plasma 
is of particular importance in Astrophysics, say, the solar 
atmosphere (Stein and Schwartz, 1972; Stein and 
Leibacher, 1974; Spitzer, 1978; Böhm-Vitense, 1987; 
Narain and Ulmschneider, 1990), the interstellar gas 
(Spitzer, 1978; Spitzer, 1982; Spitzer, 1990) and more 
recently in the Intracluster gas (Fabian et al., 2003; 
Ruszkowski et al., 2004; Fabian et al., 2005; Ferland et 
al., 2009), in particular due to the fact that wave 
dissipation has been invoked as one of the mechanisms of 
heat input. However, a detailed study of the thermal 
behavior of the above plasmas is out the scope of the 
present study, which is particularly restricted to find an 
expression of the bulk viscosity coefficient in chemically 
active plasmas.  
 
Basic Equations  
 
In general, for a one-dimensional (1-D) plane wave the 
wave number k and the angular frequency ω are related 
by:  
 

݇ = ఠ


             (1) 
 
The parameter c is defined by the following relation:  
 

ܿ = ±ටడ
డఘ

            (2) 
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where  
 

డ
డఘ

= ଵ
ఘబ

ቂ − డ()
డ

ቃ                 (3) 
 
with V = 1/ρ and the equilibrium values denoted by the 
subscript “0”.  
 
Relation (1) formally obtained for nondispersive media 
also holds for dispersive media, for which c is a complex 
quantity (as well as k) (Landau and Lifshitz, 1987). Only 
for disturbances propagating in a nonreacting ideal fluid, 
relation (1) becomes the following adiabatic sound speed:  
 

ܿ = ܿ௦ = ටቀడ
డఘ

ቁ
௦
          (4) 

 
Strictly speaking, the basic gas dynamic equations admit 
solutions in the form ∼ exp(βt + ik.r) with β = σ − iω and 
k = kr + iki, where σ and ω are real quantities and kr and 
ki are real vectors. Therefore, one may write the sound 
disturbance as ∼ exp(σt − kix) exp[i(krx − ωt)] for the one-
dimensional problem. The above can be interpreted as a 
wave of frequency ω, wavelength λ = 2π/kr, traveling 
along the x-axis with a phase velocity v = ω/kr and the 
amplitude ∼ exp(σt) exp(−kix). The first factor measures 
the attenuation (or growth if σ> 0) in time, and the second 
factor measures the spatial absorption (or amplification if 
ki< 0) in ordinary progressive wave propagation studies 
(Markham et al., 1951; Lifshitz and Pitaevskii, 1981; 
Ibáñez and Mendoza, 1987). The present analysis is 
restricted to the spatial absorption of linear wave 
propagation in a chemically active fluids from where the 
bulk viscosity coefficient is calculated.  
 
For reacting gases, let’s treat the set of ”chemical 
reactions” being in progress that can be reduced to a 
single reaction described by the following equality: 
∑ ܣߥ  =  0, where Aj are the chemical symbols of the 
reagents and the coefficients νj are positive or negative 
integers. For this treatment there is at least one component 
j, for which the concentration ξj = nj/n goes to zero when 
the reaction proceeds to a sense indefinitely, here n 
denotes the total number density of atoms and nj is the 
number density for gas particles of the jth component. So, 
one may introduce the parameters ξ and a such that  
 

ߦ =
ೕ


= 0 ,ߦܽ ≤ ߦ ≤ 1           (5) 

 
where ξ denotes the degree of advance of the reaction and 
a is the maximum number of abundance ratio of the jth 
component to the total number of nuclei.  
 
With the equation of continuity for the different 
components and definition (5), one may obtain the 
following rate equation (Vincenti and Kruger, 1975; 
Yoneyama, 1973; Ibáñez and Parravano, 1983):  

 
డక
డ௧

+ ,ߩ)ܺ ܶ, ,ߩ)ߦ ܶ)) = 0               (6) 
 
where X(ρ, T, ξ(ρ, T)) is the net rate that can be at 
equilibrium X(ρ0, T0, ξ0(ρ0, T0)) = 0. 
 
Additionally, an ideal-like state equation will be assumed, 
i.e. 
 

 = ோఘ்
ఓ(క)

                (7) 
 
where R is the gas constant and µ(ξ) is the mean 
molecular weight, µ−1 = Σjξj. 
 
On the other hand, the internal energy per unit mass 
becomes 
 

ݑ = ܴܶ(ߦ)ܣ + ߯ ܰܽ(8)                 ߦ 
 
where χ and N0 denote the dissociation energy and the 
Avogadro’s number, respectively, and 
 

(ߦ)ܣ = ∑ కೕ

ఊೕషభ
             (9) 

 
where γj is the specific heat-ratio for the jth component. 
 
For an adiabatic change, the energy equation can be 
written as follows:  
 

(ߦ)ܣܴ ఋ்
ఋ௧

− 
ఘమ

ఋఘ
ఋ௧

+ ,ߦ)ܤܴܶ ܶ) ఋక
ఋ௧

= 0         (10) 
 
with  
 

,ߦ)ܤ ܶ) = ௗ
ௗక

+ ఞ
ಳ்

         (11) 
 
where kB is the Boltzmann constant.  
 
For linear disturbances close to the equilibrium, we get  
 

ܶߜܣܴ − బ
ఘబ

మ ߩߜ + ܤܴ ܶߦߜ = 0      (12) 
 
where A0 = A(ξ0) and B0 = B(ξ0, T0) are the equilibrium 
values of the functions A(ξ) and B(ξ, T). 
 
For fluctuations ∼ exp(−iωt) from equation (6), it follows 
that the disturbances δξ, δρ, and δT are related by the 
following equation:  
 

ߦߜ =
కഐ

∗

ଵିఠఛ
ߩߜ + క

∗

ଵିఠఛ
 (13)            ܶߜ

 
where τ = (∂X/∂ξ)−1 is the relaxation time that is a positive 
quantity for chemically stable gases. Also, ߦఘ

∗ =
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்(ߩ߲/ߦ߲)  and ்ߦ
∗ =  ఘ are the corresponding(߲ܶ/ߦ߲)

derivatives at equilibrium (Yoneyama, 1973; Ibáñez, 
2004; Ibáñez and Parravano, 1983). 
 
Additionally, with equations (7), (6), and (12), equations 
(3) becomes  
 

డ
డఘ

= బ
ఘబ

[1 + ܳ]             (14) 
 
where the factor Q is given by  
 

ܳ =
(ଵିఠఛ)ି൫ఓబబାఓ൯ఘకഐ

∗ ି்క
∗ఓ/ఓ

ఓబ[(ଵିఠఛ)ା்క
∗ బ]

            (15) 
 
In (15), µξ is the derivative of the molecular weight with 
respect to the chemical parameter. It is important to 
mention that relation (14) for a particular simply chemical 
reaction was obtained in an early paper by Einstein 
(1929).  
 
In the limiting when ωτ → ∞ (frozen chemistry), Q → 
1/Aµ0, and in the opposite limiting ωτ → 0 (the chemical 
equilibrium follows the fluctuation) one can get  
 

ܳ =
ଵି൫ఓబబାఓ൯ఘకഐ

∗ ି்క
∗ ఓ/ఓ

ఓబ[ା்క
∗ బ]

        (16) 
 
In the limiting case when the fluctuation δξ is only due to 
the change of density, ்ߦ

∗ = 0, equation (15) reduces to 
 

ܳ =
(ଵିఠఛ)ି൫ఓబబାఓ൯ఘకഐ

∗

ఓబ(ଵିఠఛ)         (17) 
 
On the opposite limit when ߦఘ

∗ = 0, we get  
 

ܳ =
(ଵିఠఛ)ି்క

∗ ఓ/ఓ

ఓబ[(ଵିఠఛ)ା்క
∗ బ]

      (18) 
 
If in the limiting ்ߦ

∗ = 0 additionally ߦఘ
∗ = 0, henceforth 

Q = 1/Aµ0 = γ – 1. Therefore, from equation (14) 
ඥ߲ߩ߲/  =  ඥߛ/ߩ (being γ the specific heat ratio) 
becomes the isentropic sound speed ܿ௦

ଶ in a nonreacting 
ideal gas, as it should be.  
 
It is interesting to point out that in the Landau 
approximation (Landau and Lifshitz, 1987), where the 
fluctuation δξ is assumed to occur at a constant entropy S, 
i.e. the change of pressure p is due only to the change of 
density δρ produced by the fluctuation in the chemical 
parameter δξ, one gets  
 

డ
డఘ

= ଵ
ଵିఠఛ

[ܿ
ଶ − ݅߱߬ܿஶ

ଶ ]        (19) 
 
where ܿ

ଶ and ܿஶ
ଶ  are given by  

 

ܿ
ଶ = ቀడ

డఘ
ቁ


= ቀడ

డఘ
ቁ

క
+ ቀడ

డక
ቁ

ఘ
ቀడకబ

డఘ
ቁ, ܿஶ

ଶ = ቀడ
డఘ

ቁ
క
(20) 

 
From (15), one obtains the corresponding parameter QL in 
the Landau approximation, i.e.  
 

ܳ = − ଵ
ଵିఠఛ

ఓ

ఓబ
ఘߦߩ

∗           (21) 
 
Finally, in the limiting case when ߦఘ

∗ = 0, it follows that 
ඥ߲ߩ߲/  =  ඥ/ߩ, i.e. the sound propagation would 
occur with the isothermal sound speed as it is expected. 
Additionally, at the Landau’s approximation the effects of 
the chemical reaction may be accounted for introducing 
the second viscosity coefficient in the motion equation 
given by the following expression: 
 

ߞ = ఘబఛ
ଵିఠఛ

[ܿஶ
ଶ − ܿ

ଶ] = ఘబఛ
ଵିఠఛ

బఓ

ఓబ
ఘߦ

∗                           (22) 
 
Equation (22) represents the Landau bulk viscosity 
coefficient ζ [g×cm−1×s−1], as it can be readily verified 
with equation (20).  
 
Collisionally Ionized Hydrogen Plasma 
 
For context, at the present section the above results will 
be applied to the simple but important examples of an 
ionized Hydrogen gas when it is collisionally ionized. As 
it will be shown the damping of sound waves becomes 
zero at the Landau approximation but does not equal to 
zero at the Einstein approximation. 
 
A collisionally ionized Hydrogen plasma can be 
considered as a reacting plasma, where the following 
reaction  
 

ାܪ + ݁ି ↔ ܪ + ߯         (23) 
 
proceeds with the following expressions  
 

ܣ = ଵ
(ఊିଵ)ఓ

ܤ ,  = ଵ
ఊିଵ

+ ఞ
ಳ்

ߤ ,  = ଵ
ଵାక

  (24) 
 
In (24), ξ is the degree of the ionization, χ the Hydrogen 
ionization potential, and kB the Boltzmann constant. The 
subscript “0” indicates equilibrium values that have been 
omitted. Additionally, the generalized ionization 
recombination rate function (Yoneyama, 1973; Ibáñez and 
Parravano, 1983) becomes equal to  
 

ܺ = ܰߦ(ܶ)ߙߩଶ − ܰ1)ߦ(ܶ)ݍߩ − (ߦ = 0 (25) 
 
Therefore, at equilibrium there is  
 

(ܶ)∗ߦ = (்)
ఈ(்)ା(்)

        (26) 
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where the total recombination coefficient α(T) and the 
collisional ionization rate q(T) are respectively given by 
 

(ܶ)ߙ = ଶ.×ଵషభభ

்
ቀ0.5 ln ߆ + .ସ

௵భ/య − 0.32ቁ ቂయ

௦
ቃ     (27) 

 
(ܶ)ݍ = 5.85 × 10ିଵଵ√ܶexp (−߆) ቂయ

௦
ቃ       (28) 

 
In (28), Θ = 1.579 × 105/T (Seaton, 1959; Hummer and 
Seaton, 1962; Hummer, 1962). The above approximation 
holds (Parker, 1953; Corbelli and Ferrara, 1995) in the 
range of 3.5 × 103 ≤ T(K) ≤ 1.58 × 105.  
 
For a collisionally ionized Hydrogen plasma, from 
equation (26) follows that ߲ߦ

ߩ߲/∗ = 0. Therefore, the 
second viscosity in the Landau approximation, equation 
(22), is also equal to zero. From equation (14) however, 
the speed of sound c becomes  
 

ܿ = ට(ଵାொ)
ఘ

       (29) 

 
with  
 

ܳ = (ఊିଵ)[ଵିఓ்క/(ଵିఠఛ)]
ଵା(ఊିଵ)ఓ்క/(ଵିఠఛ)  (30) 

 
This means that the damping effect occurs due to the 
irreversible process inherent to the chemical reaction, as it 
follows from the fact than c becomes a complex quantity 
as well as the wave number k in equation (1): k = kr + iki, 
where kr and ki are real quantities. Here ki> 0 (Ibáñez, 
2004) represents the damping coefficient.  
 
On the other hand, from equations (25)-(28) the relaxation 
time becomes  
 

߬ = ଵ
ேబఘ(்)

        (31) 
 
i.e. the relaxation time τ> 0 and therefore, the Hydrogen 
plasma is chemically stable.  
 
The damping per unit wave length 2πki/kr and the phase 
velocity vph/cT normalized to the isothermal sound speed 
cT = (p0/ρ0)1/2 have been plotted in Figures 1a and 1b, 
respectively, as functions of temperature T for three 
different values of ωτ (10−1 for the dash line, 1 for the 
thick line, and 10 for the dotted line). Regardless the 
value of ωτ the damping shows maxima, and the phase 
speed shows minima at a temperature close to log(T) = 
4.16, i.e. the temperature, at which the function ்ߦ

∗  
becomes a maximum and the effect of the recombination-
ionization process become important. At very low (neutral 
Hydrogen) as well as at very high temperatures (ionized 
Hydrogen), the damping tends to be zero (Fig. 1a), and 
the sound velocity tends to be the isentropic sound speed 

(Fig. 1b), as it is expected from simple physical 
considerations.  
 
In Figures 1c and 1d the damping per unit wave length 
(2πki/kr) and the normalized phase velocity (vph/cT) are 
respectively plotted but as functions of ωτ for 
temperatures slight lower (log(T) = 4.04, (dash line) and 
higher log(T) = 4.28, (dotted line) than log(T) = 4.16 
(thick line). The damping per unit wave length becomes a 
maximum very close to the value of ωτ (Fig. 1c) where 
the inflexion point of vph/cT occurs as shown in figure 1d. 
Regardless of the temperature value, waves with ωτ<< 1 
propagate as adiabatic disturbances in a gas at chemical 
equilibrium, and those with ωτ>> 1 as adiabatic 
disturbances in a gas, where the chemical reaction is 
frozen. In the above limiting cases the disturbances tend 
to be undamped waves (Fig. 1c) as it should be.  
 
Photo-Ionized Hydrogen Plasma 
 
In this section, the results of the previous section will be 
applied to a photo-ionized Hydrogen plasma model i.e. an 
optically thin Hydrogen plasma ionized by a background 
radiation field of averaged photon energy E and photo-
ionization rate ς. The net rate function X(ρ, T, ξ) present 
in equation (6) can be expressed as follows:  
 

,ߩ)ܺ ܶ, (ߦ = ܰߦ]ߩଶߙ − (1 −  [ݍߦ(ߦ
−(1 − 1)(ߦ + ߶)߫  (32) 

 
In (32), α is the total recombination coefficient [cm3s−1] 
that is given in equation (27), q is the collisional 
ionization rate [cm3s−1] according to Black (1981). Also, 
ϕ(E, ξ) is the number of secondary electrons that is in 
general a function of the mean photon energy E and the 
ionization ξ (Shull and Van Steenberg, 1985) and ς is the 
photo-ionization rate [s−1] (Black, 1981). The last term of 
the right-hand side in equation (32) just accounted for this 
effect. Therefore, the corresponding terms in the energy 
equation (10) have to be added for consistency in order to 
take into account the heat input and output of energy by 
radiation. So, instead of equation (10) one obtains 
 

ܶߜ(ߦ)ܣܴ −

ଶߩ ߩߜ + ,ܶ)ܤܴ  ߦߜܶ(ߦ

,ߩ)ܮߜ+ ܶ, (ߦ = 0                         (33) 
 
where the net heat/cooling function becomes  
 

,ߩ)ܮ ܶ, (ߦ = ܰ{ߩଶ[(1 − [ு߉ߦ(ߦ + {ுశ߉ଶߦ
− ܰ{(1 − ܧ](ߦ + (1 + ߶)߯]} 

 
where ΛeH and ΛeH+ are the cooling losses by e−H and 
e−H+ collisions (Ibáñez, 2004) neglecting secondary 
electrons ϕ = 0.  
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According to Shull and Van Steenberg (1985), 0.002 ≤ ϕ 
≤ 0.366 for 0.95 ≥ ξ ≥ 10−4 the exact value depends on E 
(it depends on the particular optical depth in the gas) and 
strictly speaking a self-consistent radiative transfer 
problem should be worked out. However, this is out of the 
scope of the present paper, whose aim is restricted to 
obtain an indicative value of the bulk viscosity for a 
photo-ionized Hydrogen plasma. Therefore, if in a first 
approximation the production of secondary electrons is 
neglected (ϕ = 0), from equation (32) an explicit form of 
the ionization ξ∗(ρ, T) at equilibrium can be obtained, i.e.  
 

,ߩ)∗ߦ  ܶ) =
ேబఘିచାඥ

ଶேబఘ(ఈା)
      (34) 

 
with  

ܤ  = ( ܰݍߩ + ߫)ଶ + 4 ܰ(35)      ߫ߙߩ 
 

Otherwise the solution for ξ at equilibrium becomes an 
implicit function of T and ρ, and for its calculation one 
must proceed numerically. The correction introduced by 
the secondary electrons is equivalent to an increase of the 
value of the photo-ionization rate, as it can be verified 
from equation (32).  

 
 
Fig. 1. (a) The damping per unit wave length 2πki/kr as a function of temperature for three different values of the 
dimensionless frequency ωτ = 10−1 (dash line), 1 (thick line), and 10 (dotted line). (b) The phase velocity vph/cT 
normalized to the isothermal sound speed ்ܿ = ඥ/ߩ as a function of temperature T for three different values of 
the dimensionless frequency ωτ = 10−1 (dash line), 1 (thick line) and, 10 (dotted line). (c) The value of 2πki/krversus 
ωτfor three different values of the temperature log(T) = 4.04 (dash line), log(T) = 4.16 (thick line) and log(T) = 4.28, 
dotted lines). (d) The normalized velocity vph/cT versus ωτ for three different values of the temperature log(T) = 4.04 
(dash line), log(T) = 4.16 (thick line), and log(T) = 4.28 (dotted lines). 
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Fig. 2. (a) The equilibrium ionization ξ∗ versus both the temperature T [K] and density n [cm−3] for a photo-
ionization rate ς = 5 × 10−13 [s−1]. Here, the red and magenta colors refer to the T → 5,000K and to the highest T → 
30,000K, respectively. (b) The 3D plot for the equilibrium ionization ξ∗ versus both the density n [cm−3] and the 
ionization rate ς [s−1] for a fixed value of temperature, log(T) = 4.16K. Here the color palette indicates the values of 
the density n: the red and magenta colors refer to n ~ 0 and n→ 100 [cm−3], respectively. 
 

 
Fig. 3. (a) As in Figure 1a but for the photo-ionized gas with the rate given by expression (32) and ς = 5 × 10−13 
[s−1]. (b) As in Figure 1b but for the photo-ionized gas with the rate given by expression (32) and ς = 5 × 10−13 [s−1]. 
(c) As in Figure 1c but for ς = 5 × 10−13 [s−1]. (d) As in Figure 1d but for ς = 5 × 10−13 [s−1]. 
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Therefore, from equation (34) one obtains  
 

ఘߦ
∗ =

ఘഐାଶచඥିଶ

ସඥேబఘమ(ఈା)
         (36) 

 
and 
 

்ߦ
∗ =

ߙ)்ܤ + (ݍ − ்ߙ)ܤ2 + (்ݍ
4ඥܤ ܰߙ)ߩ + ଶ(ݍ  

+
ଶேబఘඥ[ఈିఈାచ̅(ఈା)]

ସඥேబఘ(ఈା)మ   (37) 

 
Here Bpρ = ∂Bp/∂ρ in equation (36), and BpT = ∂Bp/∂T, αT = 
∂α/∂T, qT = ∂q/∂T in equation (37). Similar to the previous 
section, from equations (1), (14), and (15) one may 
calculate both the real and imaginary parts of c and k. 
However, for this particular plasma ξ∗ is a function of 
both ρ and T instead of only T as given by equation (26). 
 
Figure 2a shows the 3D plot of the ionization rate ξ∗ as 
the function of T(K) and density n [cm−3]. In figure 2a, the 
red color refers to temperatures close to 5,000K. On the 
other hand, the magenta color gives the highest 
temperatures that are of the order of 30,000K for a fixed 
value of the photo-ionization ς = 5 × 10−13 [s−1]. Figure 2b 
shows the 3D plot of the ionization ξ∗ as a function of the 
density n [cm−3] and the photo-ionization ς [s−1] for a 
fixed value of temperature (log(T) = 4.16K), spanning in 
the range of values for the galactic interstellar medium 
(Klessen and Glover, 2014). In Figure 2b, the color 
indicates the values of the density: the red color refers to 
the densities n near zero values and the magenta color 
indicates the values of the density n close to 100 [cm−3]. 
From both Figures 2a and 2b follows that the effect of the 
ionizing radiation increases the ionization at any 
temperature, respect to that resulting by collisions only. 
However, the strong ionization occurring at temperature T 
≈ 2 × 104K is determined by collisions for galactic values 
of the photo-ionization rate ς [s−1].  
 
As it can be verified, the presence of the ionizing 
radiation field shifts the value of ்ߦ

∗  towards higher 
temperatures (log(T) = 4.21 for ς = 5 × 10−13 [s−1]) and 
smooths the change in the damping per unit wave length 
with the temperature T for any wave frequency. This can 
be found by comparing Figure 1a with Figure 3a, in 
which the damping 2πki/kr is plotted as the function of T 
for ς = 5 × 10−13 [s−1]. Figure 1a shows the same three 
values of ωτ but for the rate given in equation (32) instead 
of (25). The change of value of the maxima of the 
damping per unit wave depends on the value of ωτ. In 
particular it increases for ωτ = 1. Additionally, they are 
shifted towards the higher values of T following the shift 
of the maximum of ்ߦ

∗  as it follows from the physical 
considerations.  
 

Accordingly, the produced change of the phase velocity 
(taking into account the photo-ionization) can be seen 
when Figure 3b is comparing with Figure 1b. The 
minimum is shifted towards higher temperatures. 
However, Figure 3b demonstrates the smoother 
dependence at high frequencies (ωτ) as it can be seen 
when the dotted lines (ωτ = 10) in the two Figures 
mentioned above are compared.  
 
At a particular temperature, the changes in the damping 
per unit wave length (therefore in the phase velocity, too) 
are small for galactic values of the photo-ionization ς. The 
reader can also find it when Figure 3c is compared with 
Figure 1c and Figure 3d is compared with Figure 1d. 
Generally, the qualitative and quantitative effects of the 
photo-ionization are small respect to those produced by 
collisions only in an atomic Hydrogen gas, as far as the 
sound wave propagation is concerned, and in the range of 
values of the parameters considered above.  
 
Physical Implications 
 
The aim of this section is to compare the values of the 
three absorption coefficients corresponding to: the bulk 
viscosity kb̃ = cTki/ω, the dynamical viscosity kν̃, and the 
thermal conduction kκ̃ that are given by (Lifshitz and 
Pitaevskii, 1981; Landau and Lifshitz, 1987). The 
dynamical viscosity kν̃ is  
 

݇̃ఔ = ଶఠ௩
ଷ

మఊయ/మ        (38) 
 
where ν is the kinematic viscosity.  
 
The thermal conduction kκ̃ is defined by  
 

݇̃ = ఠ(ఊିଵ)ఞ
ଶ

మఊయ/మ          (39) 
 
where χ corresponds to the thermometric conductivity 
(Parker, 1953; Spitzer, 1962; Braginskii, 1965; Lifshitz 
and Pitaevskii, 1981).  
 
The problem of sound wave propagation in a self-
consistent model of the atomic gas in the galaxy and other 
plasmas represents a great interest in Astrophysics. For 
this problem, He and ions of He, and ions of heavy 
elements can be included that will be published elsewhere 
in the future.  
 
Incidentally there is another irreversible process in 
plasmas due to the frictional force between ions of mass 
mi (and velocity vi), and neutral particles of mass mn (and 
velocity vn) (Braginskii, 1965). The time scale for 
equalizing the velocities can be easily calculated from the 
respective Braginskii relations, from which one obtains 
the following equation.  
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Fig. 4. The absorption coefficients kb̃ (thin line), kν̃ (dash), 
kκ̃ (dotted), and the total absorption (thick) ktot = kb̃ + kν̃ 
+kκ̃versus the temperature T for n = 1 [cm−3], the photo-
ionization rate ς = 5 × 10−13 [s−1] when (a) the frequency 
ωτ = 10−1, (b) ωτ = 1, (c) ωτ = 10.  
 
 

߬ ≈ (ା)
〈ఙ௩〉(ఘାఘ)

        (40) 
 
where <σv> is the mean value of the product of the cross-
section and the relative velocity averaged over all 

velocities. As it can be easily verified, generally τni<<τ. 
Additionally, the frictional damping becomes independent 
on the wave-length λ, and it is only important for 
oscillations with very high frequencies, and in plasmas 
with very low ionization (Braginskii, 1965; Nomura et al., 
1999; Watson et al., 2004). Such effect will not be 
considered at the present discussion. 
 
Figures 4a, 4b, and 4c show the plots of the absorption 
coefficients kb̃ (thin line), kν̃ (dash line), kκ̃ (dotted line), 
and the total absorption ktot = kb̃ + kν̃ +kκ̃ (thick line) in 
units of [cm−1]. All these coefficients depend on the 
temperature T for n = 1 [cm−3]. The photo-ionization rate 
value is ς = 5 × 10−13 [s−1] and three different values of the 
dimensionless frequency are ωτ = 10−1, 1, and 10. The 
relaxation time τ = |Xξ|−1 [s] was also studied for n = 1 and 
the following three values of the photo-ionization rate: ς = 
5 × 10−14, 5 × 10−13, and 10−12 [s−1]. However, these 
results for the graphical study of the relaxation time τ are 
not given in this paper. Due to the fact that the effect of 
damping of sound waves is linear, it is worthy to calculate 
the total absorption coefficients due to the aforementioned 
three effects.  
 
The absorption by the bulk viscosity becomes dominant in 
the following range of temperatures where the 
recombination-ionization takes place: 4.2 × 103 ≤ T ≤ 
TM(ωτ). Here the function of the wave frequency TM(ωτ) 
increases when ωτ decreases as it is shown in Figures 4a, 
4b, and 4c. At high temperatures (T>TM) and high 
ionization, the thermal conduction (by electrons) 
dominates. In contrast, at low temperatures T ≤ 4.2 × 
103K, the thermal conduction by neutral atoms becomes 
dominant. At frequencies ωτ ≥ 1 the bulk viscosity 
coefficient shows a conspicuous (relative) maximum. On 
the other hand, the dynamical viscosity is significantly 
lower (more than one order of magnitude) than both the 
bulk viscosity and the thermal conduction in the range of 
temperature under the consideration. In conclusion, in the 
photo-ionized Hydrogen plasma, the bulk viscosity is the 
most important damping mechanism in the 
aforementioned range of temperature: 4.2 × 103 ≤ T ≤ 
TM(ωτ).  
 
CONCLUSION  
 
Following the work by Einstein (1929) on propagation of 
sound waves in reacting gases, the bulk viscosity 
coefficient introduced by Landau and Lifshitz (1987) 
(equation (22) has been generalized to chemically active 
gases. It was found that the bulk viscosity coefficient 
becomes the imaginary part of the wave vector. In 
particular, for a collisionally ionized Hydrogen gas, the 
bulk viscosity in the Landau approximation becomes zero. 
However, it is different from zero at the present 
approximation, see the results obtained in the previous 
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sections. For context, additionally the bulk viscosity is 
also calculated for the photo-ionized Hydrogen gas for the 
values of the characteristic parameters of the high latitude 
atomic gas in the Galaxy.  
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